Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Theranostics ; 12(3): 1061-1073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154474

RESUMO

Background: Pancreatic cancer comprises not only cancer cells but also a collection of cross-talking noncancerous cells within tumor. Therefore, selective delivery of cytotoxic agents towards cancer cells and limiting the collateral damage to tumor suppressive benign cells, such as effector lymphocytes in the tumor microenvironment, is of great value. Methods: Pancreatic cancer cells harbor oncogenic KRAS which induces a constitutively high level of macropinocytosis. Inspired by such uniquity, we sought to explore the targeting potential of dextran, a biomaterial presumed to be endocytosed in the macropinocytosis dependent manner. Cell entry preference, mechanism and subcellular sorting of dextran with different molecular weights were firstly examined. Triptolide (TP), a potent cytotoxin was then set as the model payload for dextran conjugation. KRAS selectivity and the therapeutic effects of dextran-conjugated TP were investigated via both in vitro cellular studies and in vivo tumor model assessment. Results: Dextran, with a specific molecular weight of 70 kDa rather than other weights, was identified as a robust KRAS-responsive intracellular delivery carrier with enhanced entry upon KRAS mutation. The 70 kDa dextran-conjugated TP (DEX-TP) displayed greater efficacy and cellular deposition efficiency towards KRAS mutant cells than KRAS wild-type cells. Treatment with DEX-TP suppressed tumor progression in KRAS mutant pancreatic cancer orthotopic mouse models with reduced toxicity and significantly extended mouse survival time. Furthermore, the conjugate attained a more favorable therapeutic outcome in the tumor immune microenvironment than the free drug, preserving the fraction of T cells and their effector cytokines. Conclusions: In summary, macropinocytic dextran was able to provide drug delivery selectivity towards KRAS mutant cancer cells and reduce tumor immunity depletion caused by the cytotoxic drug in pancreatic cancer.


Assuntos
Dextranos , Diterpenos , Neoplasias Pancreáticas , Fenantrenos , Proteínas Proto-Oncogênicas p21(ras) , Animais , Linhagem Celular Tumoral , Dextranos/administração & dosagem , Diterpenos/administração & dosagem , Diterpenos/farmacologia , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Camundongos , Terapia de Alvo Molecular , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenantrenos/administração & dosagem , Fenantrenos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Acta Pharmacol Sin ; 43(1): 15-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33824460

RESUMO

White matter injury is the major pathological alteration of subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion. It is characterized by progressive demyelination, apoptosis of oligodendrocytes and microglial activation, which leads to impairment of cognitive function. Triptolide exhibits a variety of pharmacological activities including anti-inflammation, immunosuppression and antitumor, etc. In this study, we investigated the effects of triptolide on white matter injury and cognitive impairments in mice with chronic cerebral hypoperfusion induced by the right unilateral common carotid artery occlusion (rUCCAO). We showed that triptolide administration alleviated the demyelination, axonal injury, and oligodendrocyte loss in the mice. Triptolide also improved cognitive function in novel object recognition test and Morris water maze test. In primary oligodendrocytes following oxygen-glucose deprivation (OGD), application of triptolide (0.001-0.1 nM) exerted concentration-dependent protection. We revealed that the protective effect of triptolide resulted from its inhibition of oligodendrocyte apoptosis via increasing the phosphorylation of the Src/Akt/GSK3ß pathway. Moreover, triptolide suppressed microglial activation and proinflammatory cytokines expression after chronic cerebral hypoperfusion in mice and in BV2 microglial cells following OGD, which also contributing to its alleviation of white matter injury. Importantly, mice received triptolide at the dose of 20 µg·kg-1·d-1 did not show hepatotoxicity and nephrotoxicity even after chronic treatment. Thus, our results highlight that triptolide alleviates whiter matter injury induced by chronic cerebral hypoperfusion through direct protection against oligodendrocyte apoptosis and indirect protection by inhibition of microglial inflammation. Triptolide may have novel indication in clinic such as the treatment of chronic cerebral hypoperfusion-induced SIVD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenantrenos/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fármacos Neuroprotetores/administração & dosagem , Fenantrenos/administração & dosagem , Relação Estrutura-Atividade , Substância Branca/metabolismo , Substância Branca/patologia
3.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 109-113, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817331

RESUMO

To investigate the first-line treatment of recurrent Nasopharyngeal Carcinoma treprimcab combined with chemotherapy. From January 2019 to January 2020, 48 patients with recurrent nasopharyngeal Carcinoma (RNPC) were treated in our hospital. According to the method of the random number, 24 patients were divided into the combined group and the Control Group. The patients in the combined group were given the Combined Treatment of triptolide and chemotherapy. While the Control Group only received chemotherapy. The therapeutic effects and adverse reactions of the two groups were compared, the levels of Carcinoembryonic Antigen (CEA) and carbohydrate Antigen 19-9 (CA19-9) were measured before and after treatment. The total effective rate of the combined group was 79.17% higher than that of the control group (62.50%). The total effective rate of the two groups was statistically significant (P & Lt; 0.05). The incidence of grade i/ii adverse reaction in the control group was lower than that in the combined group, such as nausea and vomiting, oral mucositis, Leukopenia, liver and kidney function damage, central granulocyte count reduction, anaemia adverse reaction. The incidence of grade iii/iv Adr in the control group was higher than that in the combined group. The incidence of grade i/ii Adr in the thrombocytopenia group was higher than that in the combined group, and the incidence of grade iii/iv Adr in the control group was lower than that in the combined group. The side effects of nausea and vomiting and oral mucositis in the control group and the combined group were statistically significant (P & Lt; 0.05). There was no significant difference between the control group and the combined group in the incidence of Leukopenia, liver and kidney injury, neutrophil, anaemia and Thrombocytopenia (P & GT; 0.05). The level of CD4 + / CD8 + in control group and combined group before treatment was higher than that after treatment (P & Lt; 0.05). The quality of life of the combined group was 91.67% higher than that of the control group (70.83%). The quality of life of the control group was significantly higher than that of the combined group (P & Lt; 0.05). The levels of CEA and CA19-9 in the two groups after treatment were lower than those before treatment, and the levels of CEA and CA19-9 in the combined group were lower than those in the control group (P & Lt; 0.05). The first-line treatment of recurrent nasopharyngeal Carcinoma with triprimmab combined with chemotherapy has a good clinical effect and has a broad clinical research prospect.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Diterpenos/administração & dosagem , Diterpenos/efeitos adversos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosite/induzido quimicamente , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Náusea/induzido quimicamente , Recidiva Local de Neoplasia , Fenantrenos/administração & dosagem , Fenantrenos/efeitos adversos , Resultado do Tratamento , Vômito/induzido quimicamente , Adulto Jovem
4.
Drug Deliv ; 28(1): 2447-2459, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766540

RESUMO

The polarization of macrophages plays a critical role in the physiological and pathological progression of rheumatoid arthritis (RA). Activated M1 macrophages overexpress folate receptors in arthritic joints. Hence, we developed folic acid (FA)-modified liposomes (FA-Lips) to encapsulate triptolide (TP) (FA-Lips/TP) for the targeted therapy of RA. FA-Lips exhibited significantly higher internalization efficiency in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than liposomes (Lips) in the absence of folate. Next, an adjuvant-induced arthritis (AIA) rat model was established to explore the biodistribution profiles of FA-Lips which showed markedly selective accumulation in inflammatory paws. Moreover, FA-Lips/TP exhibited greatly improved therapeutic efficacy and low toxicity in AIA rats by targeting M1 macrophages and repolarizing macrophages from M1 to M2 subtypes. Overall, a safe FA-modified liposomal delivery system encapsulating TP was shown to achieve inflammation-targeted therapy against RA via macrophage repolarization.


Assuntos
Artrite Experimental/tratamento farmacológico , Diterpenos/uso terapêutico , Ácido Fólico/uso terapêutico , Lipossomos/química , Macrófagos/efeitos dos fármacos , Fenantrenos/uso terapêutico , Animais , Artrite Reumatoide/patologia , Química Farmacêutica , Citocinas/efeitos dos fármacos , Diterpenos/administração & dosagem , Diterpenos/efeitos adversos , Diterpenos/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/efeitos adversos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Ácido Fólico/administração & dosagem , Ácido Fólico/efeitos adversos , Ácido Fólico/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Fenantrenos/administração & dosagem , Fenantrenos/efeitos adversos , Fenantrenos/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
5.
Drug Deliv ; 28(1): 2127-2136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617835

RESUMO

The aim of this study was to develop and evaluate a triptolide phospholipid complex (TPCX) for the treatment of rheumatoid arthritis (RA) by transdermal delivery. TPCX was prepared and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) analysis, transmission electron microscope (TEM), and scanning electron microscope (SEM). The solubility of TPCX was determined. Then, a TPCX cream was prepared to evaluate its percutaneous permeability and the antiarthritis effect. The transdermal permeability was determined using the Franz method, and a microdialysis system was used for skin pharmacokinetic study. A rat model of RA was prepared to evaluate the pharmacological effects. TPCX increased the solubility of triptolide in water, and the percutaneous permeability of TPCX cream was greatly enhanced compared with triptolide cream. The skin pharmacokinetic study indicated that TPCX cream has a longer biological half-life (t1/2) and mean residence time (MRT), but it has a shorter Tmax than that of triptolide cream in vivo. The area under the curve (AUC0-t)/AUC0-∞) and the peak concentration (Cmax) of TPCX cream were obviously higher than those of triptolide cream. The TPCX-loaded cream alleviated paw swelling and slowed down the progression of arthritis by inhibiting the inflammatory response by down regulating the TNF-α, IL-1ß, and IL-6 levels, thus exhibiting excellent antiarthritic effects. In summary, the prepared TPCX effectively increases the hydrophilicity of triptolide, which is good for its percutaneous absorption and enhances its effect on RA rats. TPCX can be a good candidate for the transdermal delivery to treat RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Diterpenos/farmacologia , Imunossupressores/farmacologia , Fenantrenos/farmacologia , Fosfolipídeos/química , Administração Cutânea , Animais , Área Sob a Curva , Química Farmacêutica , Diterpenos/administração & dosagem , Diterpenos/farmacocinética , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/farmacologia , Meia-Vida , Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Mediadores da Inflamação/metabolismo , Masculino , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Ratos , Ratos Wistar
6.
Drug Deliv ; 28(1): 2033-2043, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569906

RESUMO

Triptolide (TPL) is a diterpenoid triepoxide with broad antitumor efficacy, while lack of mechanism of action, severe systemic toxicity, and poor water solubility of TPL limited its usage. To unveil the mechanism of action and improve the pharmaceutical properties of TPL, here we explored the molecular mechanism of TPL and then fabricated TPL-loaded membrane protein-chimeric liposomes (TPL@MP-LP) and tested its anticancer efficacy against hepatocellular carcinoma (HCC). CCK8 assay, colony formation assay, EdU assay, and flow cytometry were used to examine the activity of TPL. RNA sequence and gain-and-loss of function assays were used to explore the molecular mechanisms. TPL@MP-LP was characterized by size, zeta potential, polydispersity index, and transmission electron microscopy. Cellular uptake and cell viability assay were performed to evaluate the internalization and anticancer efficacy of TPL@MP-LP in vitro. Biodistribution and in vivo antitumor efficacy of TPL@MP-LP were evaluated on orthotopic HCC mice models. TPL robustly inhibited HCC cells by inducing cell proliferation arrest, apoptosis via the mitochondrial pathway, and necroptosis via RIPK1/RIPK3/MLKL signaling. TPL was successfully loaded into MP-LP, with a drug-loading capacity of 5.62 ± 0.80%. MP-LP facilitated TPL internalization and TPL@MP-LP exerted enhanced anticancer efficacy against Huh7 cells. TPL@MP-LP showed targeting ability to the tumor site. More importantly, TPL@MP-LP treatment suppressed tumor growth but showed minimal damage to liver and renal functions. TPL exerted anticancer effects on HCC via inducing cell proliferation arrest, apoptosis, and necroptosis, and the MP-LP might be a promising delivery strategy to improve the antitumor efficacy while mitigating toxicity of TPL for HCC therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Diterpenos/farmacologia , Lipossomos/química , Neoplasias Hepáticas/patologia , Proteínas de Membrana/química , Fenantrenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Diterpenos/administração & dosagem , Portadores de Fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Fenantrenos/administração & dosagem , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície
7.
J Neuroimmunol ; 358: 577657, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34315069

RESUMO

Astrocyte pathology is a feature of neuromyelitis optica spectrum disorder (NMOSD) pathology. Recently mitochondrial dysfunction and metabolic changes were suggested to play a role in NMOSD. To elucidate the role of mitochondrial dysfunction, astrocyte pathology was induced in C57BL/6 J female mice by intracerebral injection of aquaporin-4-immunoglobulin G from an NMOSD patient, together with complement. Etomoxir has been shown to cause mitochondrial dysfunction. Etomoxir was delivered to the central nervous system and resulted in decreased astrocyte pathology. The ameliorating effect was associated with increases in different acylcarnitines and amino acids. This suggests that mitochondria may be a therapeutic target in NMOSD.


Assuntos
Astrócitos/imunologia , Astrócitos/patologia , Autoanticorpos/imunologia , Compostos de Epóxi/administração & dosagem , Mitocôndrias/imunologia , Animais , Astrócitos/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neuromielite Óptica/imunologia
8.
Toxicol Lett ; 342: 85-94, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33600922

RESUMO

Triptolide (TP), an active component of Tripterygium wilfordii Hook. F, has been widely used in China for treating autoimmune and inflammatory diseases, and has also been validated by modern science and developed as a candidate anti-cancer treatment. However, liver toxicity of TP has seriously hindered its use and development, the clinical features and primary toxicological mechanism have been unclear. Considering the major target regulation mechanism of TP is the suppression of global transcription regulated by RNAPII, which is closed related with the detoxification of drugs. This paper tries to verify the synergistic liver injury and its mechanism of TP when co-administered with CYP3A4 substrate drug. The experiments showed that TP dose-dependently blocked transcriptional activation of CYP3A4 in both hPXR and hPXR-CYP3A4 reporter cell lines, lowered the mRNA and protein expression of PXR target genes such as CYP3A1, CYP2B1, and MDR1, and inhibited the functional activity of CYP3A in a time- and concentration-dependent manner in sandwich-cultured rat hepatocytes (SCRH) and female Sprague-Dawley (f-SD) rats. Furthermore, TP combined with atorvastatin (ATR), the substrate of CYP3A4, synergistically enhanced hepatotoxicity in cultured HepG2 and SCRH cells (CI is 0.38 and 0.29, respectively), as well as in f-SD rats, with higher exposure levels of both drugs. These results clearly indicate that TP inhibits PXR-mediated transcriptional activation of CYP3A4, leading to a blockade on the detoxification of itself and ATR, thereby greatly promoting liver injury. This study may implies the key cause of TP related liver injury and provides experimental data for the rational use of TP in a clinical scenario.


Assuntos
Atorvastatina/toxicidade , Citocromo P-450 CYP3A/metabolismo , Diterpenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fenantrenos/toxicidade , Receptor de Pregnano X/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/toxicidade , Atorvastatina/administração & dosagem , Atorvastatina/farmacocinética , Citocromo P-450 CYP3A/genética , Diterpenos/administração & dosagem , Diterpenos/farmacocinética , Sinergismo Farmacológico , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Ratos , Ratos Sprague-Dawley
9.
Pharmacol Res ; 165: 105377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484817

RESUMO

Triptolide (TP) possesses a wide range of biological and pharmacological activities involved in the treatment of various diseases. However, widespread usages of TP raise the urgent issues of the severe toxicity, which hugely limits its further clinical application. The novel functional nanostructured delivery system, which is of great significance in enhancing the efficacy, reducing side effects and improving bioavailability, could improve the enrichment, penetration and controlled release of drugs in the lesion location. Over the past decades, considerable efforts have been dedicated to designing and developing a variety of TP delivery systems with the intention of alleviating the adverse toxicity effects and enhancing the bioavailability. In this review, we briefly summarized and discussed the recent functionalized nano-TP delivery systems for the momentous purpose of guiding further development of novel TP delivery systems and providing perspectives for future clinical applications.


Assuntos
Diterpenos/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Fármacos por Nanopartículas , Fenantrenos/administração & dosagem , Animais , Diterpenos/uso terapêutico , Diterpenos/toxicidade , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/uso terapêutico , Compostos de Epóxi/toxicidade , Humanos , Fenantrenos/uso terapêutico , Fenantrenos/toxicidade
10.
Mol Nutr Food Res ; 65(4): e2000735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33079463

RESUMO

SCOPE: 2- and 3-monochloropropanediol (2/3-MCPD) and glycidol are absorbed in the intestine after lipase-catalyzed hydrolysis of their fatty acid esters. METHODS AND RESULTS: In an exposure study with 12 non-smoking participants, the complete urinary excretion of the metabolite 2,3-dihydroxypropylmercapturic acid (DHPMA) and of 2/3-MCPD is measured on four consecutive days before and after consumption of 50 g glycidyl ester-rich palm fat or 12 g 2/3-MCPD ester-rich hazelnut oil. After controlled exposure, urinary excretion rates of 2/3-MCPD per hour strongly increase, followed by a decrease with average half-lives of 5.8 h (2-MCPD) and 3.6 h (3-MCPD). After consumption of hazelnut oil, mean excretion rates are 14.3% (2-MCPD) and 3.7% (3-MCPD) of the study doses. The latter rate is significantly higher (4.6%) after consumption of palm fat, indicating partial conversion (about 5%) of glycidol to 3-MCPD under the acidic conditions in the stomach. The average daily "background" exposure is estimated to be 0.12 and 0.32 µg per kg body weight (BW) for 2-MCPD and 3-MCPD, respectively. The relatively high and constant urinary excretion of DHPMA does not reflect the controlled exposure. CONCLUSION: Urinary excretion of 2- and 3-MCPD is suitable as biomarker for the external exposure to the respective fatty acid esters.


Assuntos
Compostos de Epóxi/administração & dosagem , Glicerol/análogos & derivados , Propanóis/administração & dosagem , alfa-Cloridrina/urina , Adulto , Corylus , Creatinina/urina , Compostos de Epóxi/química , Ésteres/química , Feminino , Glicerol/administração & dosagem , Glicerol/química , Glicerol/urina , Humanos , Masculino , Pessoa de Meia-Idade , Óleo de Palmeira/farmacologia , Propanóis/química , Espectrometria de Massas em Tandem
11.
Biomed Pharmacother ; 131: 110737, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32932044

RESUMO

PURPOSE: To investigate whether triptolide-nanoliposome-APRPG (TP-nanolip-APRPG), a novel sustained-release nano-drug delivery system that targets vascular endothelial cells, could enhance the inhibition of triptolide (TP) on laser-induced choroidal neovascularization (CNV). METHODS: TP was encapsulated with or without APRPG (Ala-Pro-Arg-Pro-Gly) peptide-modified nanoliposomes. CNV was induced by laser photocoagulation in C57BL/6J mice. One microliter of 10 µg free TP monomer, TP-nanolip containing 10 µg TP, TP-nanolip-APRPG containing 10 µg TP, or an identical volume of PBS was intravitreally injected in mice immediately after laser photocoagulation. Seven days after laser photocoagulation, CNV volumes were calculated in each group. Infiltration of M2 macrophages as well as protein levels of vascular endothelial growth factor (VEGF) and inflammatory factors including ICAM-1 and MCP-1 in the RPE-choroid complex were determined. In vitro assays for cell proliferation, migration, and tube formation were also performed. RESULTS: TP-nanolip-APRPG was successfully synthesized and exhibited good TP delivery and enhanced the cellular uptake of TP in vitro. In vitro studies showed that TP-nanolip-APRPG was a better inhibitor of cell proliferation (31.34 ±â€¯3.89 % vs 41.25 ±â€¯4.67 % vs 53.55 ±â€¯5.76 %), migration (62.60 ±â€¯8.88 vs 104.60 ±â€¯13.32 vs 147.00 ±â€¯13.15), and tube formation (681.26 ±â€¯108.15 vs 926.75 ±â€¯54.01 vs 1189.84 ±â€¯157.14) than TP-nanolip or free TP (all P < 0.05). Intravitreal injections of free TP (77588.10±7719.28 µm3), TP-nanolip (64628.23 ±â€¯5857.96 µm3), and TP-nanolip-APRPG (50880.34 ±â€¯6606.56 µm3) inhibited the development of CNV compared with the PBS control group (120338.07 ±â€¯17428.90 µm3) (P < 0.01, n=6). TP-nanolip-APRPG and TP-nanolip significantly down-regulated the protein levels of VEGF (152.76±19.55 vs 182.24±19.98 vs 208.55±21.93 pg/mg total protein) and inflammatory factors including ICAM-1 (61.69±3.49 vs 72.04±3.49 vs 81.92±4.09 ng/mg total protein) and MCP-1 (40.14±3.50 vs 50.75±4.18 vs 60.27±5.23 pg/mg total protein) compared with the free TP monomer group (all P < 0.05, n=8), which paralleled the decreased infiltration of M2 macrophages in the CNV lesions. Moreover, no influence on retinal morphology and function was observed before or after treatment in each group (P > 0.05, n=6). CONCLUSIONS: TP-nanolip-APRPG, a novel sustained-release drug delivery system targeting endothelial cells of CNV lesions, could enhance TP inhibition of the development of CNV without toxicity in the retina, suggesting therapeutic potential for CNV-related diseases in future clinical practice.


Assuntos
Neovascularização de Coroide/prevenção & controle , Diterpenos/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Lipossomos/química , Nanopartículas/química , Oligopeptídeos/química , Fenantrenos/administração & dosagem , Animais , Movimento Celular/efeitos dos fármacos , Neovascularização de Coroide/etiologia , Preparações de Ação Retardada , Diterpenos/química , Diterpenos/farmacocinética , Liberação Controlada de Fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenantrenos/química , Fenantrenos/farmacocinética , Retina/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/análise
12.
PLoS One ; 15(6): e0234493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520953

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination and inflammation. Dysregulated lipid metabolism and mitochondrial dysfunction are hypothesized to play a key role in MS. Carnitine Palmitoyl Transferase 1 (CPT1) is a rate-limiting enzyme for beta-oxidation of fatty acids in mitochondria. The therapeutic effect of pharmacological CPT1 inhibition with etomoxir was investigated in rodent models of myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalitis (EAE). Mice receiving etomoxir showed lower clinical score compared to placebo, however this was not significant. Rats receiving etomoxir revealed significantly lower clinical score and lower body weight compared to placebo group. When comparing etomoxir with interferon-ß (IFN-ß), IFN-ß had no significant therapeutic effects, whereas etomoxir treatment starting at day 1 and 5 significantly improved the clinical scores compared to the IFN-ß and the placebo group. Immunohistochemistry and image assessments of brain sections from rats with EAE showed higher myelination intensity and decreased expression of CPT1A in etomoxir-treated rats compared to placebo group. Moreover, etomoxir mediated increased interleukin-4 production and decreased interleukin-17α production in activated T cells. In conclusion, CPT1 is a key protein in the pathogenesis of EAE and MS and a crucial therapeutic target for the treatment.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Compostos de Epóxi/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Feminino , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Ratos , Ratos Endogâmicos Lew
13.
Biochem Biophys Res Commun ; 527(1): 283-288, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446381

RESUMO

Lysyl oxidase (LOX) is involved in fibrosis by catalyzing collagen cross-linking. Previous work observed that Triptolide (TPL) alleviated radiation-induced pulmonary fibrosis (RIPF), but it is unknown whether the anti-RIPF effect of TPL is related to LOX. In a mouse model of RIPF, we found that LOX persistently increased in RIPF which was significantly lowered by TPL. Excessive LOX aggravated fibrotic lesions in RIPF, while LOX inhibition mitigated RIPF. Irradiation enhanced the transcription and synthesis of LOX by lung fibroblasts through IKKß/NFκB activation, and siRNA knockdown IKKß largely abolished LOX production. By interfering radiation induced IKKß activation, TPL prevented NFκB nuclear translocation and DNA binding, and potently decreased LOX synthesis. Our results demonstrate that the anti-RIPF effect of TPL is associated with reduction of LOX production which mediated by inhibition of IKKß/NFκB pathway.


Assuntos
Diterpenos/farmacologia , Proteínas da Matriz Extracelular/antagonistas & inibidores , Quinase I-kappa B/antagonistas & inibidores , Fenantrenos/farmacologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Animais , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Proteínas da Matriz Extracelular/biossíntese , Feminino , Quinase I-kappa B/metabolismo , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fenantrenos/administração & dosagem , Proteína-Lisina 6-Oxidase/biossíntese , Fibrose Pulmonar/metabolismo , Lesões por Radiação/metabolismo , Relação Estrutura-Atividade
14.
Pharm Biol ; 58(1): 253-256, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32233814

RESUMO

Context: It is common to combine two or more drugs in clinics in China. Triptolide (TP) has been used primarily for the treatment of inflammatory and autoimmune diseases. Astragaloside IV (AS-IV) has been applied with many other drugs, due to its various pharmacological effects. AS-IV and TP can be used together for the treatment of diseases in clinics in China.Objective: This study investigates the effects of astragaloside IV (AS-IV) on the pharmacokinetics of TP in rats and its potential mechanism.Materials and methods: The pharmacokinetics of orally administered triptolide (2 mg/kg) with or without AS-IV pre-treatment (100 mg/kg/day for 7 d) were investigated. Additionally, the effects of AS-IV on the transport of triptolide were investigated using the Caco-2 cell transwell model.Results: The results indicated that when the rats were pre-treated with AS-IV, the Cmax of triptolide decreased from 418.78 ± 29.36 to 351.31 ± 38.88 ng/mL, and the AUC0-t decreased from 358.83 ± 19.56 to 252.23 ± 15.75 µg/h/L. The Caco-2 cell transwell experiments indicated that AS-IV could increase the efflux ratio of TP from 2.37 to 2.91 through inducing the activity of P-gp.Discussion and conclusions: In conclusion, AS-IV could decrease the system exposure of triptolide when they are co-administered, and it might work through decreasing the absorption of triptolide by inducing the activity of P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/farmacocinética , Diterpenos/farmacocinética , Fenantrenos/farmacocinética , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Diterpenos/administração & dosagem , Interações Medicamentosas , Medicamentos de Ervas Chinesas , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacocinética , Humanos , Masculino , Fenantrenos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Saponinas/administração & dosagem , Triterpenos/administração & dosagem
15.
Oncol Rep ; 43(5): 1569-1579, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323848

RESUMO

The epidermal growth factor receptor­tyrosine kinase inhibitor (EGFR­TKI), gefitinib, is used widely to treat non­small cell lung cancer (NSCLC) with EGFR­activating mutations. Unfortunately, the acquired drug resistance promoted by epithelial­mesenchymal transition (EMT) markedly limits the clinical effects and remains a major barrier to a cure. Our previous isobaric tags for relative and absolute quantitation­based proteomics analysis revealed that the E­cadherin protein level was markedly upregulated by triptolide (TP). The present study aimed to determine whether TP reverses the gefitinib resistance of human lung cancer cells by regulating EMT. It was revealed that TP combined with gefitinib synergistically inhibited the migration and invasion of lung adenocarcinoma cell line A549; the combination treatment had a significantly better outcome than that of TP and gefitinib alone. Moreover, TP effectively increased the sensitivity of drug resistant A549 cells to gefitinib by upregulating E­cadherin protein expression and downregulating the MMP9, SNAIL, and vimentin expression levels. The dysregulated E­cadherin expression of gefitinib­sensitive cells induced gefitinib resistance, which could be overcome by TP. Finally, TP combined with gefitinib significantly inhibited the growth of xenograft tumors induced using gefitinib­resistant A549 cells, which was associated with EMT reversal and E­cadherin signaling activation in vivo. The present results indicated that the combination of TP and TKIs may be a promising therapeutic strategy to treat patients with NSCLCs harboring EGFR mutations.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Diterpenos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/administração & dosagem , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Antígenos CD/genética , Caderinas/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/farmacologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Fenantrenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncol Rep ; 43(6): 1863-1874, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236588

RESUMO

Lung cancer has one of the highest mortalities of any cancer worldwide. Triptolide (TP) is a promising tumor suppressor extracted from the Chinese herb Tripterygium wilfordii. Our previous proteomics analysis revealed that TP significantly interfered with the ribosome biogenesis pathway; however, the underlying molecular mechanism remains poorly understood. The aim of the present study was to determine the molecular mechanism of TP's anticancer effect by investigating the association between ribosomal stress and p53 activation. It was found that TP induces nucleolar disintegration together with RNA polymerase I (Pol I) and upstream binding factor (UBF) translocation. TP interrupted ribosomal (r)RNA synthesis through inhibition of RNA Pol I and UBF transcriptional activation. TP treatment increased the binding of ribosomal protein L23 (RPL23) to mouse double minute 2 protein (MDM2), resulting in p53 being released from MDM2 and stabilized. Activation of p53 induced apoptosis and cell cycle arrest by enhancing the activation of p53 upregulated modulator of apoptosis, caspase 9 and caspase 3, and suppressing BCL2. In vivo experiments showed that TP significantly reduced xenograft tumor size and increased mouse body weight. Immunohistochemical assays confirmed that TP significantly increased the p53 level and induced nucleolus disintegration, during which nucleolin distribution moved from the nucleolus to the nucleoplasm, and RPL23 clustered at the edge of the cell membrane. Therefore, it was proposed that TP induces ribosomal stress, which leads to nucleolus disintegration, and inhibition of rRNA transcription and synthesis, resulting in increased binding of RPL23 with MDM2. Consequently, p53 is activated, which induces apoptosis and cell cycle arrest.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Diterpenos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/administração & dosagem , RNA Ribossômico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos Alquilantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/farmacologia , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Fenantrenos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Pharm Biomed Anal ; 185: 113263, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203895

RESUMO

Triptolide, a major active ingredient of Tripterygium wilfordii Hook F, provides anti-inflammatory and neuroprotective activities. In this study, a microwave-assisted stable isotope labeling derivatization-magnetic dispersive solid phase extraction (MA-SILD-MDSPE) combined with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the determination of the triptolide in rat microdialysates. A pair of SILD reagents (d0-/d3-3-N-methyl-2'-carboxyl Rhodamine 6G, d0-/d3-MCR6G) were used to label triptolide in real samples and standards under mild conditions. The introduction of SILD reagents enhanced the sensitivity of MS/MS detection and ensured accurate quantification. A novel molecularly imprinted polymer coating with d0-MCR6G labeled triptolide as template was firstly synthesized by precipitation polymerization method, and used to selectively extract the labeled triptolides from complex matrices. The purified d0-/d3-MCR6G-triptolides were determined by UHPLC-MS/MS analysis. Using the proposed method, a good linearity (R2>0.995), low limits of detection (LOD, 0.45-0.50 pg/mL) and quantification (LOQ, 3.0 pg/mL) were achieved. The intra- and inter-day precision and accuracy were within the acceptable ranges. No significant matrix effect was observed. The derivatization efficiency was more than 96 %. The validated method was successfully applied to a comparative pharmacokinetic study of triptolide synchronously in brain and blood of normal and Alzheimer's disease rats by in vivo microdialysis sampling technique.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Diterpenos/análise , Monitoramento de Medicamentos/métodos , Microdiálise/métodos , Fenantrenos/análise , Administração Oral , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Diterpenos/administração & dosagem , Diterpenos/farmacocinética , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/análise , Compostos de Epóxi/farmacocinética , Humanos , Limite de Detecção , Masculino , Micro-Ondas , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Ratos , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
18.
Mol Cancer Res ; 18(7): 1088-1098, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198139

RESUMO

Epithelial-derived high-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy. Roughly 80% of patients are diagnosed with late-stage disease, which is defined by wide-spread cancer dissemination throughout the pelvic and peritoneal cavities. HGSOC dissemination is dependent on tumor cells acquiring the ability to resist anoikis (apoptosis triggered by cell detachment). Epithelial cell detachment from the underlying basement membrane or extracellular matrix leads to cellular stress, including nutrient deprivation. In this report, we examined the contribution of fatty acid oxidation (FAO) in supporting anoikis resistance. We examined expression Carnitine Palmitoyltransferase 1A (CPT1A) in a panel of HGSOC cell lines cultured in adherent and suspension conditions. With CPT1A knockdown cells, we evaluated anoikis by caspase 3/7 activity, cleaved caspase 3 immunofluorescence, flow cytometry, and colony formation. We assessed CPT1A-dependent mitochondrial activity and tested the effect of exogenous oleic acid on anoikis and mitochondrial activity. In a patient-derived xenograft model, we administered etomoxir, an FAO inhibitor, and/or platinum-based chemotherapy. CPT1A is overexpressed in HGSOC, correlates with poor overall survival, and is upregulated in HGSOC cells cultured in suspension. CPT1A knockdown promoted anoikis and reduced viability of cells cultured in suspension. HGSOC cells in suspension culture are dependent on CPT1A for mitochondrial activity. In a patient-derived xenograft model of HGSOC, etomoxir significantly inhibited tumor progression. IMPLICATIONS: Targeting FAO in HGSOC to promote anoikis and attenuate dissemination is a potential approach to promote a more durable antitumor response and improve patient outcomes.


Assuntos
Carcinoma Epitelial do Ovário/tratamento farmacológico , Carnitina O-Palmitoiltransferase/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Compostos de Epóxi/administração & dosagem , Ácidos Graxos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Regulação para Cima , Animais , Anoikis , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Compostos de Epóxi/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Oxirredução/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Pharm ; 578: 119078, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31988037

RESUMO

Gene therapy is a promising tool for the treatment of various cancers but is hindered by the physico-chemical properties of siRNA and needs a suitable vector for the delivery of siRNA to the target tissue. Bile acid-based block copolymers offers certain advantages for the loading and delivery of siRNA since they can efficiently complex siRNA and bile acids are biocompatible endogenous molecules. In this study, we demonstrate the use of lipids as co-surfactants for the preparation of mixed micelles to improve the siRNA delivery of cholic acid-based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were polymerized on the surface of cholic acid to afford a star-shaped block copolymer with four arms (CA-PAGE-b-PEG)4. The allyl groups of PAGE were functionalized to bear primary or tertiary amines and folic acid was grafted onto the PEG chain end to increase cell uptake. (CA-PAGE-b-PEG)4 functionalized with either primary or tertiary amines show high siRNA complexation with close to 100% complexation at N/P ratio of 8. Uniform aggregates with diameters between 181 and 188 nm were obtained. DOPE, DSPE-PEG2k, and DSPE-PEG5k lipids were added as co-surfactants to help stabilize the nanoparticles in the cell culture media. Mixed micelles had high siRNA loading with close to 100% functionalization at N/P ratio of 16 and diameters ranging from 153 to 221 nm. The presence of lipids in the mixed micelles improved cell uptake with a concomitant siRNA transfection in HeLa and HeLa-GFP model cells, respectively.


Assuntos
Ácido Cólico/administração & dosagem , Micelas , RNA Interferente Pequeno/administração & dosagem , Ácido Cólico/química , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/química , Terapia Genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , RNA Interferente Pequeno/química
20.
Drug Deliv Transl Res ; 10(1): 93-107, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31418132

RESUMO

The metronomic administration of a low-dose cytotoxic agent with no prolonged drug-free breaks is an anti-angiogenic cancer treatment method. The use of nano-formulations in this manner enhances anti-tumor efficacy and reduces toxicity by inhibiting angiogenic activity, reduces adverse effects, and changes the biodistribution of TP in the body, steering TP away from potentially endangering healthy tissues. The present study uses liposomes and Asn-Gly-Arg (NGR) peptide conjugated aminopeptidase N(APN)-targeted liposomes for triptolide (TP), as a model for the investigation of targeted metronomic administration and subsequent effects on the toxicity profile and efficacy of the chemotherapeutic agent. Metronomic NGR-PEG-TP-LPs have been found to have enhanced anti-tumor activity, a phenomenon that is attributed to an increase in angiogenic inhibition properties. In vitro experiments demonstrate that the viability, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) are obviously suppressed in comparison with that of other treatment groups. In vivo experiments also demonstrate that the anti-tumor efficacy of targeted metronomic administration is superior to that of liposome-administered treatments given at maximum tolerated dose (MTD) schemes, as is evidenced by markedly decreased tumor volume, vessel density, and the volume of circulating endothelial progenitor cells (CEPCs) in serum. Moreover, we observed that the metronomic administration of NGR-PEG-TP-LPs could elevate thrombospondin-1 (TSP-1) expression in tumors, a finding that is consistent with the promotion of TSP-1 secretion specifically from HUVECs. Additionally, metronomic NGR-PEG-TP-LPs have minimal drug-associated toxicity (weight loss, hepatotoxicity and nephrotoxicity in mice). Our research demonstrates the significance of targeted metronomic administration using liposomes for anti-angiogenic cancer therapy.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Diterpenos/administração & dosagem , Fenantrenos/administração & dosagem , Administração Metronômica , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/farmacocinética , Composição de Medicamentos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipossomos , Camundongos , Oligopeptídeos , Fenantrenos/química , Fenantrenos/farmacocinética , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...